Integral invariants and complex eigenvalue bounds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials

We show that the absolute values of non-positive eigenvalues of Schrödinger operators with complex potentials can be bounded in terms of Lp-norms of the potential. This extends an inequality of Abramov, Aslanyan, and Davies to higher dimensions and proves a conjecture by Laptev and Safronov. Our main ingredient are the uniform Sobolev inequalities of Kenig, Ruiz, and Sogge. Introduction and mai...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Iii

We discuss the eigenvalues Ej of Schrödinger operators −∆ + V in L(R) with complex potentials V ∈ L, p < ∞. We show that (A) ReEj → ∞ implies ImEj → 0, and (B) ReEj → E ∈ [0,∞) implies (ImEj) ∈ l for some q depending on p. We prove quantitative versions of (A) and (B) in terms of the L-norm of V .

متن کامل

Projective curvature and integral invariants

In this paper, an extension of all Lie group actions on R to coordinates defined by potentials is given. This provides a new solution to the equivalence problems of curves under the projective group and two of its subgroups. The potentials correspond to integrals of higher and higher order producing an infinite number of independent integral invariants. Applications to computer vision are discu...

متن کامل

Bounds for graph invariants

Let G be a graph without isolated vertices and let α(G) be its stability number and τ(G) its covering number. The σv-cover number of a graph, denoted by σv(G), is the maximum natural number m such that every vertex of G belongs to a maximal independent set with at least m vertices. In the first part of this paper we prove that α(G) ≤ τ(G)[1 + α(G)− σv(G)]. We also discuss some conjectures analo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1988

ISSN: 0893-9659

DOI: 10.1016/0893-9659(88)90075-4